
SEED: A System for Entity Exploration and
Debugging in Large-Scale Knowledge Graphs

Jun Chen, Yueguo Chen, Xiaoyong Du, Xiangling Zhang, Xuan Zhou

School of Information, Renmin University of China, Beijing, China

Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), MOE, China

chenyueguo@ruc.edu.cn

Abstract—Large-scale knowledge graphs (KGs) contain massive
entities and abundant relations among the entities. Data explo-
ration over KGs allows users to browse the attributes of entities
as well as the relations among entities. It therefore provides a
good way of learning the structure and coverage of KGs. In this
paper, we introduce a system called SEED that is designed to
support entity-oriented exploration in large-scale KGs, based on
retrieving similar entities of some seed entities as well as their
semantic relations that show how entities are similar to each
other. A by-product of entity exploration in SEED is to facilitate
discovering the deficiency of KGs, so that the detected bugs can
be easily fixed by users as they explore the KGs.

I. INTRODUCTION

As huge knowledge graphs (KGs) contain massive entities
and abundant relations among the entities, they can be widely
applied to applications such as semantic search, question
answering and recommender systems [6]. Currently, public
KGs such as DBpedia [3] and YAGO [4] contain millions
of entities and hundreds of millions of facts/triples. They
continuously grow as more facts are automatically discovered
from the underlying sources or manually created by human.

The fast evolving of KGs poses some challenges to the effec-
tive usage of them. One challenge is how to effectively search
for interesting content from KGs. SPARQL [7] is not user-
friendly because it requires users to have a good knowledge
of the underlying metadata (predicates and prefixes). Keyword
search [9] is sometimes unable to accurately capture users’
query intention. Another challenge is how to effectively detect
and fix the deficiency of KGs.

We propose a system called SEED, which is able to par-
tially address the above challenges. Similar to the notion of
exemplar queries [5], SEED allows users to explore the KGs
using a small number of seed entities (seeds), from which it
automatically discovers the semantic relations (called semantic
patterns) shared among the seeds, and accordingly obtains
similar entities of the seeds. By examining the mappings
between entities and semantic patterns (SPs), users can easily
debug and fix some deficiency of KGs as they explore the
KGs. The two tasks are seamlessly integrated by an explore-
and-feedback process in SEED.

The procedure of entity exploration in SEED is actu-
ally an entity set expansion process, which aims at find-
ing entities that are similar to a given small number
of seeds. For example, given the seeds Forrest Gump,

Apollo 13, The Polar Express, we may expect to find
entities such as Cast Away, because they are all movies
starring Tom Hanks. SEED can automatically discover the
SPs shared among the seeds, such as Tom Hanks : starring
and Movie : type (the left part is an anchor entity and the
right part is an edge, further explained in Section 3.1). Entities
satisfying the discovered SPs are treated as candidates, which
are further ranked using an effective ranking model. SEED
allows users to interactively modify the query (seeds) or select
some specified SPs they prefer, so that entities can be explored
with different semantic constraints.

During the process of entity exploration, a list of similar
entities as well as their relevant SPs are discovered and
maintained. SEED further helps users to detect the deficiency
of the underlying KGs, by evaluating the possible mismatches
between the entities and the SPs. For example, SEED dis-
covers that Cast Away is a relevant entity of the above
SP. Meanwhile, it finds that this entity may lack the SP
United States : country of origin, which is widely shared
by many other similar entities. In this case, SEED may treat
it as a mismatch between the entity and the SP, according to
a confidence score derived from an association rule mining
algorithm. This certainly helps users to detect and correct the
bugs as they explore the KGs.

II. SYSTEM OVERVIEW

SEED is designed using an architecture of three layers: the
user interface layer, the query processing layer, and the data
storage layer. They are shown in Figure 1.

A. User Interface
Entity exploration and debugging are supported by the web-

based user interfaces called Exploration Visual and Debug-
ging Visual respectively. To assist users in formalizing a query
rapidly, a dropdown input box is provided on the middle of
the UI. Users can search an entity by typing some keywords,
based on which a list of relevant entities are recommended for
picking. The input box shows the selected seeds, which can
also be removed by users. Query results (entities and SPs) are
returned and listed once a query is submitted. Users can also
select seeds from the query results, or filter out irrelevant SPs
to generate a new query. We apply ECharts 1 (a tool for graph
visualization) to assist the exploration of entity attributes.

1http://echarts.baidu.com/index-en.html

978-1-5090-2020-1/16/$31.00 © 2016 IEEE ICDE 2016 Conference1350

Triple PredictionEntity Set Expansion

Exploration Visual Debugging Visual

py p

Semantic Pattern Miner Frequent Item Generator

Association Rule MinerCandidate Generator

Confidence�MakerRanking Model

Triple ManagerTriple Manager

Main Store

Fig. 1. System architecture.

In addition to the Exploration Visual, the results of the
entity exploration are also shown on the Debugging Visual.
Users are able to debug knowledge by creating new triples
using simple click operations, with the recommendations gen-
erated from the Triple Prediction component.

B. Query Processing
Once the seeds are updated on the Exploration Visual,

an entity set expansion process will be triggered, which first
discovers SPs via a component called SP Miner. Then, the
Candidate Generator finds candidate entities satisfying the
discovered SPs. Those candidates will be further ranked by
the Ranking Model component to evaluate their relevance to
the seeds. The details will be discussed in Section III-A.

One missing triple can be generated from a mapping be-
tween an entity and a SP. The Triple Prediction component
is therefore designed to evaluate the likelihood of the missing
triples, which are quantified by the Confidence Marker based
on the mined associate rules generated by the Frequent Items
Generator and the Association Rule Miner. Missing triples
of high confidence will be recommended in the Debugging
Visual to assist users with knowledge debugging. The details
of triple prediction will be discussed in Section III-B.

C. Data Storage
We apply a general database (MySQL) as the backend store

for maintaining triples. Considering that the query perfor-
mance is critical for interactive operations, to guarantee the
performance of data exploration and knowledge debugging,
special indexes are created for triples. In SEED, a SP consists
of a predicate and an entity. We therefore create B+-tree
indexes on two combinations: S-P (subjects and predicates)
and O-P (objects and predicates), which support fast retrieval
of not only semantic patterns, but also subjects or objects
respectively. A merit of using relational databases as the

backend store is that it assists the users in manipulating triples
(insert, delete and update, which are necessary for knowledge
debugging) very efficiently.

III. KEY TECHNIQUES

In this section, we present two key techniques used by
SEED: (1) entity set expansion, for discovering and ranking
candidate entities and their relevant SPs, (2) triple prediction,
for assigning a confidence score to a potential triple that is
discovered from a mismatch between an entity and a SP.

A. Entity Set Expansion
A triple in KGs can be represented as < s, p, o >. A subject

or an object (not including literal objects) is treated as an entity
in our study. For such a triple, the predicate actually defines the
relation between two entities. In our system, we use a concept
of semantic pattern to define the common features shared
among entities. There are two types of SPs: < e, p, x > and
< x, p, e >, where x is an entity variable, e is called an anchor
entity. The former SP < e, p, x > (shorted as e : p) represents
a triple pattern having e as the subject and p as the predicate;
the latter one < x, p, e > (shorted as e : p) represents a triple
pattern having e as the object and p as the predicate. We apply
an underline to the predicate p to distinguish < x, p, e >
from < e, p, x >. In this study, we use κ to denote the RDF
KGs, π to denote a SP, e′ |= π to denote that the entity e′
satisfies the SP π, and E(π, κ) to denote the set of entities
in κ satisfying π. For instance, a SP π = Tom Hanks :
starring represents the triple pattern of the entities that have
Tom Hanks as a star, i.e., < x, starring, Tom Hanks >,
and Forrest Gump |= π simply because there is a triple
< Forrest Gump, starring, Tom Hanks > in κ.

In SEED, entity exploration is achieved through a process
called entity set expansion which aims at finding a list of
entities similar to a set of m ≥ 1 seed entities Q =
{e1, e2, . . . , em} from the KGs. We solve this problem by
discovering the SPs satisfied by all (or part of) the seed entities.
Then, the candidate entities satisfying those SPs will be ranked
by their similarity score defined as:

S(e) =
∑

π∈Φ(Q) ∧ e|=π

R(π,Q) ∗D(π, κ) (1)

where Φ(Q) is the set of relevant SPs of the seeds in Q.
R(π,Q) is the relevance score of π to the given query Q
and D(π, κ) is the discriminative score of π in KGs. Two
components are further evaluated as follows.

Discriminability D(π, κ): The number of entities satis-
fying π in κ is applied for evaluating the discriminability
D(π, κ). According to the Equation 2, the larger |E(π)| the
less discriminability that π has. For instance, for two SPs
π1 = Tom Hanks : starring and π2 = Movie : type,
it is obvious that D(π1, κ) > D(π2, κ) because π1 is more
discriminative than π2.

D(π, κ) =
1

log|E(π)| (2)

Relevance R(π,Q): Considering the deficiency of KGs,
we allow the cases that some seeds in Q do not satisfy π.

1351

Intuitively, the more seeds in Q satisfying π, the more relevant
it is. There are two reasons that a seed does not satisfy π: 1) π
is a true positive SP to Q. It is however due to the deficiency
of the KGs; 2) π is a false positive SP. As a result, only part
of the seeds satisfy it. We need to discriminate these two cases
so that the first case can obtain more relevance score than the
second case. The relevance R(π,Q) is formalized as:

R(π,Q) =
∏
e∈Q)

p(e, π) (3)

where p(e, π) is the probability of e satisfying π. Based on the
idea of collaborative filtering in recommendation systems
[8], we evaluate p(e, π) by considering the likelihood of e
satisfying similar SPs of π:

p(e, π) =

⎧⎨
⎩

1 if e |= π∑
π
′∈ψ(π)

I(e,π
′
)w(π,π

′
)∑

π
′∈ψ(π)

w(π,π′)
otherwise

(4)

where ψ(π) is derived by substituting the anchor entity (from
ea to any other ex) or the predicate (from p to any other px)
of π = ea : p respectively; I(e, π

′
) = 1 if e |= π

′
, and zero

otherwise; the weight of π
′
, w(π, π

′
) = |E(π)∩E(π

′
)|

|E(π)| .

B. Triple Prediction
SEED explicitly provides users the relevant SPs to show

how entities are relevant to each other. When using the
Debugging Visual interface, users often find some mismatches
between some relevant entities and relevant SPs, which may
be due to the deficiency of KGs. To deal with it, we give
recommendations for users to modify these mismatches, by
predicting the likelihood of an entity satisfying a SP. This is
achieved by applying an association rule mining strategy [2],
which is very efficient for the task of triple prediction.

Given a set of items I = {i1, i2, . . . , im}, an association rule
is an implication X → Y consisting of the itemsets X,Y ⊂ I
with X ∩ Y = ∅. Given a set of samples (transactions) T =
{t|t ⊆ I}. The minimum support of a rule X → Y denotes
s% of the samples in T that contain X ∪ Y . The minimum
confidence of a rule X → Y denotes c% of the samples in T
that contain X also contain Y .

Inspired by the idea of [1], to predict whether an entity e′
satisfies a SP π = e : p (note that if e′ |= π, we will not predict
it), we predict whether e′ implies e and p respectively. If e′
implies both e and p, it is very likely that e′ is able to imply
π, i.e., the triple < e, p, e′ > (or < e′, p, e > if π = e : p) is
likely to be true. Otherwise, if neither e nor p can be implied
by e′, most likely, the triple does not exist.

We use the predicate p as an example to show how the
association rule mining algorithm is applied to predict whether
an entity e′ implies p or not. A number of top relevant entities
of entity set expansion are used as samples (transactions) of T .
Let P (e) be the set of predicates which have a subject e. The
predicates in P (e′) are treated as items of a transaction e′. The
predicate p in π is treated as Y . Firstly, we find the frequent
itemsets from the set T . Secondly, for each frequent itemset
X (a set of predicates), we check whether X → Y is satisfied

based on the confidence of the association rule. Lastly, if there
is an associate rule X → Y such that X ⊆ P (e′), then we
conclude that e′ implies p.

The prediction of whether an entity e′ implies e is very
similar to that of whether e′ implies p. The neighbours of an
entity e will be used as items of a transaction e′, and e in π
will be treated as Y . Finally, the prediction is made based on
whether an entity e′ implies e and p:

• High confidence: implies both e and p.
• Medium+ confidence: only implies e.
• Medium confidence: only implies p.
• Low confidence: Neither e nor p is implied.

Note that the implication of e is more important than that
of p, simply because e is more discriminative than p.

IV. DEMONSTRATION

The DBpedia v3.9 dataset is applied for demonstration,
which includes the core subsets of DBpedia: Mapping-based
Properties, Mapping-based Types, Articles Categories, Page
Links and Redirects. The applied KGs finally contain nearly
40M triples and 6.5M entities. A component of coreference
resolution is designed to remove/add the URIs of entities
and predicates for the dataset. The demonstration will be
focused on two key functions of SEED: data exploration and
knowledge debugging.

A. Entity Exploration

The first function we provide to the audience is the entity
exploration of the KGs. The audience can come up with a
seed entity of interest (by typing some keywords or using
the provided cases), SEED then automatically discovers the
relevant SPs, based on which similar entities are discovered
and ranked. If the audience want to learn more about the
KGs, they can modify the inputs by selecting some new seeds
from the answer list or remove some seeds to form a new
query. Meanwhile, they can focus on some specified SPs (by
clicking them), which will filter out the irrelevant entities that
do not satisfy them. When the audience click a specific entity,
a directed graph centered on the entity will be presented,
showing the ingoing and outgoing edges of the entity.

B. Knowledge Debugging

During the entity exploration process, the audience may
detect some mismatches between entities and SPs, due to the
deficiency of the KGs. To deal with them, SEED provides
the knowledge debugging function to fix the detected bugs
with humans’ intervention. With the help of user interface,
the audience can freely switch to the Debugging Visual at
any time of entity exploration. When the audience select
an entity (or a SP), the SP list (or the entity list) will
automatically generate the feedback (visualized by different
colors) as recommendations to the triples formed by the entity
(or SP) and the corresponding SPs (or entities). The audience
can fix the bug by clicking a recommended plus sign, which
leads to the creation of a new triple.

1352

Fig. 2. The user interface of a use case

C. Use Cases

We designed some use cases for the audience to facilitate
understanding the system. The audience can freely choose
a seed from the provided topics, and initiate an entity ex-
ploration process. For example, given a famous database
researcher Jim Gray as input, we can quickly see the relevant
SPs on the right side, including Turing Award : award,
Database Researchers : subject, etc. The left side shows a
list of similar entities. Through hovering the mouse, we can
easily detect the relations between entities and SPs, where the
focused entity satisfies those star-marked SPs, and vise versa.
If we are more interested in database researchers with the
title of ACM Fellow, we can either provide more relevant
seeds or focus on some specified SPs. For example, we
further explore the KGs by selecting Jeffrey Ullman as
another seed via clicking the up-arrow sign of the result
Jeffrey Ullman. However, we find that some of the top
entities do not satisfy our need. We may directly focus on
the SP of ACM Fellow to filter results. Casually, we find
Edgar Codd, Jim Gray and Michael Stonebraker are all
Turing Award winners in the database area. In order to
discover more common relations among them, we can update
seeds by choosing the above entities. After browsing, we
detect that Michael Stonebraker misses some SPs due to
the deficiency of KGs.

As illustrated in Figure 2, when we click on the left radio
button of Michael Stonebraker (No. 1 entity), the right side
will highlight those SPs that mismatch (with a plus sign) with
it, implying that the KGs do not contain the corresponding
triples connecting the SPs and the entity. The color of the
plus signs indicates the confidence of the mismatch generated
by SEED, and blue ones mean recommendations of highest
confidence. We can fix the mismatch by clicking the plus sign,

the system will automatically create a triple for it and insert
it into the underlying KG as delta knowledge. The new triples
will take effect immediately in the next round of exploration
if we choose to explore with new triples.

This work is supported by National Basic Research Program
of China (973 Program) No. 2012CB316205, the National
Science Foundation of China under grant (No. 61472426,
61170010, 61272138), the Fundamental Research Funds for
the Central Universities, the Research Funds of Renmin Uni-
versity of China No. 14XNLQ06, and a gift by Tencent.

REFERENCES

[1] Z. Abedjan and F. Naumann. Improving RDF data through association
rule mining. Datenbank-Spektrum, 13(2):111–120, 2013.

[2] S. R. Agrawal Rakesh. Fast algorithms for mining association rules in
large databases. In VLDB, pages 487–499, 1994.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G.
Ives. Dbpedia: A nucleus for a web of open data. In ISWC, pages
722–735, 2007.

[4] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: A
spatially and temporally enhanced knowledge base from wikipedia. Artif.
Intell., 194:28–61, 2013.

[5] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. Exemplar
queries: Give me an example of what you need. PVLDB, 7(5):365–376,
2014.

[6] A. Passant. dbrec - music recommendations using dbpedia. In ISWC,
pages 209–224, 2010.

[7] E. Prud-hommeaux and A. Seaborne. Sparql query language for rdf. In
W3C. https://www.w3.org/TR/rdf-sparql-query/, 2008.

[8] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering
techniques. Adv. Artificial Intellegence, 2009:421425:1–421425:19, 2009.

[9] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k exploration of
query candidates for efficient keyword search on graph-shaped (RDF)
data. In ICDE, pages 405–416, 2009.

Acknowledgment

1353

